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Abstract

The use of learning algorithms for automatic price adjustments is on the rise. However, these

algorithms, developed under idealised conditions, can yield unexpected outcomes when put into

practice. This paper presents simulations of pricing competitions between autonomous learning

agents. We introduce a basic pricing algorithm and apply it within a standard pricing environ-

ment. We demonstrate that pricing algorithms that do not consider competitor prices may converge

to pseudo-collusive equilibria. In these equilibria, the margins they charge are slightly higher than

the competitive margins corresponding to the Nash equilibrium. Subsequently, we modify the envi-

ronment to introduce a delay in the demand’s reaction to price changes. With this transient demand

response, the observed pricing inefficiency significantly increases. This study thus illustrates how

model misspecification can lead to supra-competitive pricing induced by simple, stateless learning

algorithms.
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1 Introduction

An increasing number of pricing decisions are now made by algorithms. Algorithmic pricing use cases

range from high-frequency trading (Seth 2023), to online retail (Amazon) (Rathore 2022) and demand-

based pricing of taxi service (Uber) (Singh 2024). Most recently, a fast food restaurant in the US has

attracted attention for introducing surge pricing, where the price of a meal can change by the hour

depending on the time of day and demand (Foroohar 2024).

Although algorithmic pricing can, in theory, provide benefits to the seller and the buyer (better price

discovery), the benefits are not guaranteed. Specifically, when some learning algorithms continuously

adapt to new information, their performance might be difficult to predict. There have been a few cases

where the use of algorithms has led to market inefficiencies and supra-competitive pricing. In Assad et

al. 2020, the authors inspected real-world data and showed that the introduction of automated pricing

at gas stations is linked to higher gas prices with an increase ranging from 9% to 28%. The topic

of algorithmic collusion was further investigated by numerical studies (Calvano et al. 2020; Calvano

et al. 2021; Klein 2021; Kastius et al. 2022; Boer et al. 2022; Cartea, Chang, Penalva, et al. 2022) and

empirical studies (Musolff 2022; Brown et al. 2023). Calvano et al. 2020 presented a numerical study in

which the competition between Q-learning algorithms converged to tacit collusion. That is, dynamic

equilibrium in which both agents quoted prices higher than one-stage Nash equilibrium prices and

punished any deviations from those prices. Consequently, the authors concluded that the algorithms

have learned to collude without explicit communication. While other studies such as Boer et al. 2022

contested the conclusion that the algorithms in fact learned to collude, it cannot be disputed that

algorithmic pricing can lead to higher prices.

In this paper, we draw from the numerical experiments carried out in Calvano et al. 2020. Similarly,

we perform simulations of pricing competitions between autonomous learning agents. However, we

make a few important modifications. For the learning algorithm, we use a special type of multi-

armed bandit algorithm. The agents do not possess any state and cannot observe the prices of the

competitors. Secondly, we impose a constraint on the exploration of the algorithms so that the explored

price remains within a specified distance from the current quoted price. The used algorithm is both

rational and non-stationary. When the environment is stationary, the algorithm will converge towards

a local maximiser of the reward. Furthermore, if the environment changes, the algorithm will converge

towards a new maximiser.

In addition to the modifications to the learning algorithm, we introduce a modification to the pricing

environment. Specifically, we allow for a transient demand response. We define steady-state demand as

a demand calculated given fixed, stationary prices. Then, the true demand experienced by the market

participants depends on the history of the theoretical steady-state demands. This is motivated by

the intuition that customers cannot always easily observe, and thus compare prices from different

competitors. As an example, let us consider gas stations. If a gas station increases the price of gas,

customers cannot immediately identify that there is a gas station with a better offer. Change in

customer behaviour may take time.

Calvano et al. 2020 defines tacit collusion as a supra-competitive pricing equilibrium in which agents

punish opponents when they deviate from quoting high prices. Since the bandit agents used here do
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not have state and do not observe competitor prices, they are not be able to explicitly respond to

price deviations. Consequently, any potential price increase cannot be classified as tacit collusion.

Therefore, this work uses the terms “psuedo-collusion” and “pricing inefficiency” to emphasise the

distinction.

In addition to the literature regarding collusion, our work builds up on non-stationary, multi-armed

bandit algorithms (Sutton et al. 1998; Garivier et al. 2008) and their application to pricing environ-

ments (Cartea, Chang, Mroczka, et al. 2022; Treetanthiploet et al. 2023; Sliwinski et al. 2024).

Our main contributions are as follows:

1. We demonstrate that even without transient demand response, autonomous agents that cannot

observe the competitor prices can converge to supra-competitive equilibrium. In this equilibrium,

the margins they charge slightly exceed the competitive margins corresponding to the Nash

equilibrium.

2. We show that when the transient demand response is introduced into the environment, the

observed pricing inefficiency can increase significantly, with the margins increasing by the order

of 50% with respect to the competitive levels.

3. We conduct sensitivity analysis and indicate how the hyperparameters of the simulations (num-

ber of agents, market parameters, learning parameters, noise) influence observed pseudo-collusion.

The numerical experiments were implemented using Python. The code necessary to reproduce the

obtained results can be accessed via a Github repository1.

2 Setup

We model the market competition as a discrete simultaneous multi-agent stage game with N agents

and T stages. We index the time with t ∈ {1, 2, 3, ...} and the agents with i ∈ {1, 2, 3, ..., N}. At each
time step t, each agent submits an action to the environment, which then returns the reward rit. The

goal of the agents is to maximise their own expected profit

E

[
T∑
t=1

rit

]
. (2.1)

The agents do not have any prior knowledge and have to learn based on the observed own rewards

only.

2.1 Economic environment

We start with a simple model of price competition with constant marginal costs and logit demand

as in Calvano et al. 2020. Each agent has a constant cost ci. At step t, the agents submit the

1See https://github.com/ls2716/AlgorithmicPricingWithTransientDemand.
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prices pt = {p1t , p2t , ..., pNt } ∈ RN . Then, given the prices, the steady-state demands for the agents

d̂t = {d̂1t , d̂2t , ..., d̂Nt } ∈ RN are calculated as follows

d̂it =
exp

(
ai−pit

µ

)
∑N

j=1 exp
(
aj−pit

µ

)
+ exp

(
a0

µ

) , (2.2)

where a = {a1, a2, ..., aN} ∈ RN are the agent quality indices, a0 is the inverse index of aggregate

demand and µ > 0 is the index of horizontal differentiation. a, a0 and µ are fixed environment

parameters and are not given to the agents. For conciseness, a0 will be referred to as the “demand

index” and µ as the “substitution index”.

2.1.1 Delay mechanism

We now introduce a delay mechanism which encodes the possibility that the true demands dt =

{d1t , d2t , ..., dNt } ∈ RN at the current step depend on the history of the episode. The true demand will

be equal to the average of the steady-state demands from the last m time steps (including the current

step):

dit :=

∑t
k=min(1,t−m+1) d̂

i
k∑t

k=min(1,t−m+1) 1
(2.3)

Then, the rewards for the agents, are calculated as:

rit = (pit − ci) · dit. (2.4)

All simulations presented in this work employ one of two possible values of the delay parameter m.

Either there is no transient demand response (m = 1), or the true demands are two-step averages of

steady-step demands from the current and previous step (m = 2).

2.1.2 Single-stage Nash equilibrium

Setting the demand delay m to 1 (no delay; true demands equal steady-state demands d̂t =dt) and

the action space to R (price can be any real number), we obtain a N -player single-stage pricing game.

This pricing game has a unique Nash equilibrium. Furthermore, for any fixed competitor prices

p−i := {p1, p2, ..., pi−1, pi+1, ..., pN} (2.5)

the reward function of i-th agent

ri(pi) = (pi − ci) · dit(pi, p−i) (2.6)

has a unique maximiser and no other stationary points.

For a proof, see Sliwinski et al. 2024.
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2.2 Pricing algorithm

The agents will follow a simple learning algorithm, a non-stationary sliding-window Eps-Greedy bandit

with localised exploration. Algorithm 1 presents the algorithm. The bandit is initialised with an

exploration rate ε, a finite action set A ⊂ R, a width of the exploration range w, and a size of the

sliding window τ . The action set is formed of equispaced real numbers (e.g. [1., 1.01, 1.02, ..., 2.]). Let

us denote the j-th element of the action set as Aj .

The bandit maintains a time-indexed expected reward vectormt ∈ R[A], initialised to 0. At step t, with

probability 1− ε, the bandit submits any action that maximises the expected reward from mt−1. The

ties are broken randomly. With probability ε, the bandit explores. First, it chooses any maximising

action pt,max and then uniformly samples a random action from [pt,max − w/2, pt,max + w/2] ∩A.

After submitting the action and receiving the reward rt, the expected reward vector is updated. Let

us index the actions with j and let us denote the indicator function that j-th action was chosen at

time step k as Ik(j). Then:

mj
t =


∑t

k=min(1,t−τ+1) Ik(j)rk∑t
k=min(1,t−τ+1) Ik(j)

if

t∑
k=min(1,t−τ+1)

Ik(j) > 0

0 otherwise.

(2.7)

That is, the expected reward is the average reward over the last τ steps with value 0 if an action was

not taken in the last τ steps.

The algorithm design is based on the Eps-Greedy bandit algorithm from Sutton et al. 1998. The non-

stationary modification, that is, the sliding window approach, is sourced from Garivier et al. 2008.

The local exploration constraint is introduced for the purpose of this work. The application of the

relatively simple Eps-Greedy with a sliding window is motivated by the previous work on Sliwinski

et al. 2024 where this algorithm (without localised exploration) achieved the best performance in a

competitive pricing problem.

Algorithm 1 Non-stationary sliding-window localised-exploration Eps-Greedy bandit algorithm

Input: environment, exploration rate ε, finite action set A, width of the exploration range w, sliding

window size τ

1: Initialise m0 = 0.

2: for t = 1, 2, ..., T − 1, T steps do

3: Sample the maximising action pt,max uniformly from {Aj : j ∈ argmaxl m
l
t−1}.

4: Sample Xt from U(0, 1).

5: if Xt > ε then

6: Submit the action pt := pt,max.

7: else

8: Sample the action pt uniformly from the set A∩ [pt,max −w/2, pt,max +w/2] and submit it.

9: end if

10: Obtain the reward rt and compute the expected reward vector mt using Equation (2.7).

11: end for

We assume that in the action set, all the actions yield non-negative rewards. Then, the presented
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bandit algorithm has following characteristics:

• The algorithm is rational. In a stationary environment with a reward function R : R → R, the
maximising action pt,max will eventually reach a local maximiser of the reward function R i.e.

∃t′∀t≥t′∀p∈A∩[pt,max−w/2,pt,max+w/2]R(pt,max) ≥ R(p). (2.8)

If the reward function has a unique maximiser and no other stationary points, the algorithm

will converge to that maximiser.

• The exploration of the bandit is limited to the neighborhood of the best action. This considerably

limits the temporal variations of the quoted price.

• The algorithm is non-stationary - if the reward function changes, the bandit will converge towards

a new local maximiser.

3 Results

Having specified the environment and the agents, we run the simulations of the pricing competition.

All simulations followed the same procedure:

1. Initialise the environment.

2. Initialise the agents.

3. For T steps:

i Get actions from the agents.

ii Submit the actions to the environment and receive the corresponding rewards.

iii Update the agents based on the observed rewards.

Although the setup allows for asymmetric agents with different costs and quality indices, all the

simulations presented show symmetric cases where both the costs and quality indices are the same for

all the agents.

3.1 Normalised profit and margin

To measure the collusion between the pricing algorithms, it is useful to juxtapose the collected rewards

with the payoffs corresponding to the competitive Nash equilibrium and the monopolistic Pareto

equilibrium, in which the agents work together to maximise the sum of the profits. Thus, in the

presentation of the results, we compute a normalised reward per step ∆i
t, calculated as

∆i
t =

rit − rNash

rPareto − rNash
, (3.1)

where rNash is the Nash payoff and rPareto is the Pareto payoff.
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The above definition works only when the Nash and Pareto payoffs are unique. This is satisfied for

symmetric competition, where all agents quote the same price. For proof, see Appendix A. Note that

we define the equilibria in the steady-state sense using steady-state demands.

In addition to the normalised profit, we also quantify the degree of collusion by comparing the quoted

margin sit := pit − ci to the margin corresponding to the Nash equilibrium. For this purpose, we

calculate the percent increase of the margin with respect to the Nash margin

γit :=
sit − sNash

sNash
· 100%, (3.2)

where sNash := pNash − c1 (costs are identical).

3.2 Long term behaviour analysis

In addition to price/reward graphs that display the time evolution of the pricing competition, we want

to analyse the average long-term behaviour of the prices and rewards. Specifically, we want to inspect

following quantities:

• average normalised reward ∆,

• standard deviation of the long-term reward std(r)

• percent increase of the average margin with respect to the Nash margin γ = s−sNash
sNash

· 100%,

• standard deviation of the percent increase in margin std(γ).

Averages and standard deviations were computed over different instances of simulations, over agents,

and over time. There were nsim = 10 simulations, each with T = 20000 time steps. To ensure that the

values are not affected by the initial learning phase, the computation excluded the first Tin := 5000

time steps. Denoting the averaged quantity with overbar (·), we can write:

(·) := 1

nsimN(T − Tin)

nsim∑
j=1

N∑
i=1

T∑
t=Tin+1

[(·)it]j , (3.3)

where [·]j corresponds to j-th simulation instance. Then, for the standard deviation

std(·) :=

√√√√ 1

nsimN(T − Tin)

nsim∑
j=1

N∑
i=1

T∑
t=Tin+1

(
(·)− [(·)it]j

)2
. (3.4)

Note that the standard deviation does not indicate the error in the estimation of the average quantity.

Rather, it indicates the spread of the rewards/margins.

3.3 Baseline simulations

We start with a baseline experiment. The following sections explore how the results might change for

different parameters of the environment and the learning algorithms. Table 1 presents the parameters

of the baseline experiment.
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Environment Bandit

Parameter Value Parameter Value

Number of agents N 3 Action set [1.001, 1.002, ..., 3.999, 4.]

Quality indices a [1, 1, 1] Exploration rate ε 0.25

Costs c [1, 1, 1] Sliding window τ 50

Demand index a0 −1 Exploration width w 0.01

Substitution index µ 0.25

Delay m ∈ {1, 2}
Total steps T ∈ {2000, 20000}

Table 1: Parameters for the baseline numerical experiment. The left part of the table shows the

environment parameters, while the right part shows the parameters of the bandit algorithms.

We aim to analyse the steady state of price competition. To decrease the time of initial learning, the

maximising actions at the first step were set to the Nash prices. Figures 1 and 2 present the results

of the simulations for a scenarios with no demand delay (m = 1) and where the true demand equals

two-step average of steady-state demands (m = 2), respectively.

Table 2 presents the long-term averaged results obtained for the baseline experiment parameters.
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Figure 1: Symmetric competition between three learning agents for an episode with T = 2000 and no

delay in demand response (m = 1). The top plot shows the reward per step with the left axis indicating

the reward and the right axis the normalised reward. The bottom plot shows the corresponding action

- the left axis indicates the price, and the right axis the % increase of margin w.r.t. Nash margin. The

initial action indicates the Nash price.
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Figure 2: Symmetric competition between three learning agents for an episode with T = 2000 and one

step delay (m = 1) - the true demand is an average of the steady-state demands from the current

and previous step. The top plot shows the reward per step with the left axis indicating the reward and

the right axis the normalised reward. The bottom plot shows the corresponding action - the left axis

indicates the price, and the right axis the % increase of margin w.r.t. Nash margin. The initial action

indicates the Nash price.

The plots in Figures 1 and 2 indicate that the agents’ actions become correlated. Whenever there is an

increase or decrease in the quoted price for one agent, it is accompanied by a similar increase/decrease

in the price of the other agents. For the case with no delay, it can be seen that the agents leave the

Nash equilibrium towards supra-competitive, inefficient pricing. Table 2 indicates that in the long

term, the time-averaged margins increase by 8.2% which corresponds to 0.072 normalised reward ∆.

When a delay is added to the environment (Figure 2), we can still observe correlation between agents’

actions. Moreover, the long-term increase in the average reward and price is significantly greater

compared to the case without delay. In the long term, the average margins increase by 51% which

corresponds to the normalised profit ∆ = 0.43. We note that in the simulations, the delay included

a two-step averaging window, which is much smaller than the agents’ reward memory τ = 50 (sliding

window size).

The results above show that for the given learning algorithm, even when there is no delay in the

demand response, the agents might converge to supra-competitive pricing. This pricing inefficiency

can be greatly exacerbated if the demand response is delayed.
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Delay m
Average normalised Average % increase w.r.t.

reward ∆ [std(∆)] Nash margin γ [std(γ)]

1 (no delay) 0.072 [0.024] 8.2 [3.0]%

2 (2 step averaging) 0.432 [0.041] 51.1 [4.4]%

Table 2: Average reward and price for the symmetric competition between three learning agents. For

the given environment parameters, the Nash reward rNash = 0.12, Pareto reward rPareto = 0.25 and

Nash margin sNash = 0.37.

3.4 Number of agents

In this section, we analyse how the number of agents influences the averaged steady state reached in

the pricing competition. We run simulations for the same parameters as in the baseline experiments,

but with a different number of agents N . All quality indices and costs are still equal

a1 = a2 = .... = aN = 1, c1 = c2 = .... = cN = 1. (3.5)

Table 3 presents the results for the case with no delay (m = 1) and Table 4 presents the results for

the case with a one-step delay (m = 2). Firstly, we note that for one agent without any delay (first

row of Table 3, the average collected reward r is equal to the Nash reward rNash, indicating that

Algorithm 1 achieves the maximum reward (within the rounding error). The rest of the table shows

that increasing the number of agents from N = 2 increases market competitiveness. Not only does it

decrease the competitive Nash margin, but it also reduces pricing inefficiency.

When the delay is added to the environment (Table 4), we again observe a significant increase in

prices. For a single agent (first row), the algorithm no longer finds the optimal Nash price. Instead, it

increases the margin by 11% w.r.t. Nash margin and as a result receives a smaller reward. For N ≥ 2,

we observe margin increases of order 50%. While increasing the number of agents decreases pricing

inefficiency, the effect remains significant. For simulation with 10 agents, the average margins are still

46% higher than the Nash level and the average normalised reward is 0.176.

Number of Nash Pareto Average normalised Nash Average % increase w.r.t.

agents N payoff payoff reward ∆ [std(∆)] margin Nash margin γ [std(γ)]

1 0.552 0.552 NA (r = 0.552) 0.802 0 [0.2]%

2 0.223 0.338 0.154 [0.045] 0.473 9.1 [2.6]%

3 0.120 0.250 0.072 [0.024] 0.370 8.2 [3.0]%

4 0.0814 0.201 0.048 [0.017] 0.331 7.3 [3.2]%

5 0.0615 0.169 0.035 [0.012] 0.312 6.3 [3.0]%

7 0.0413 0.130 0.021 [0.008] 0.291 4.8 [3.1]%

10 0.0276 0.0983 0.014 [0.006] 0.278 3.6 [3.0]%

Table 3: Time-averaged rewards and margins in pricing competition with no delay for varying number

of agents.
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Number of Nash Pareto Average normalised Nash Average % increase w.r.t.

agents N payoff payoff reward ∆ [std(∆)] margin Nash margin γ [std(γ)]

1 0.552 0.552 NA (r = 0.540) 0.802 11.5 [1.1]%

2 0.223 0.338 0.701 [0.069] 0.473 47.4 [4.0]%

3 0.120 0.250 0.432 [0.041] 0.370 51.1 [4.4]%

4 0.0814 0.201 0.322 [0.029] 0.331 49.8 [4.4]%

5 0.0615 0.169 0.269 [0.023] 0.312 48.9 [4.6]%

7 0.0413 0.130 0.215 [0.017] 0.291 47.4 [4.6]%

10 0.0276 0.0983 0.176 [0.012] 0.278 45.9 [4.4]%

Table 4: Time-averaged rewards and margins in pricing competition with one-step delay (m = 2) for

varying number of agents.

3.5 Environment parameters

In this section, we analyse how the pricing inefficiency changes as we change the parameters of the

environment, specifically the substitution index µ and the demand index a0. For clarity, we will

focus just on the percent increase of the average margin with respect to the Nash margin γ and the

corresponding standard deviation std(γ).

We start with the parameters from the baseline simulation in Table 1 and then vary µ and a0. Table

5 displays the equilibrium information for different environment parameters. This information is

useful for understanding the relative pricing inefficiency. Table 6 presents the results for simulations

with no delay, and Table 7 presents the results for simulations with one-step delay (m = 2). For

simulations without delay, increasing a0 decreases the pricing inefficiency, and this effect becomes

more pronounced as the substitution index µ decreases. This result is particularly important as a0

can be regarded as fixed competitors who do not vary their actions. Consequently, as more agents quote

fixed (competitive) prices, the possibility of pricing inefficiency decreases. Table 6 appears to indicate

that for low a0 (high demand) increasing the substitution index µ (the products are substituted less

easily) decreases the pricing inefficiency. However, looking at Nash margins in Table 5, increasing µ

corresponds to a significant increase in the competitive margin. Therefore, when µ increases from 0.1

to 1, the inefficiency decreases from 9% to 6% but the Nash margin increases almost tenfold from 0.15

to 1.4. Thus, it is difficult to conclude whether µ has a positive or negative impact on pseudo-collusion.

The results from the simulations with one-step delay (Table 7) again indicate that the introduction

of the delay corresponds to higher pricing inefficiency. Similarly to the case with no delay, increasing

a0 roughly corresponds to a decrease in pricing inefficiency, while the effect of µ is hard to gauge.

However, as was the case with increasing the number of market participants, the pseudo-collusion due

to the transient demand response is only moderately affected by the market parameters - the best-case

margin is still 35% higher than the Nash level.
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µ

a0
-2 -1 0 1

rNash rPareto sNash - - - - - - - - -

0.1 0.050 0.575 0.150 0.050 0.267 0.150 0.019 0.020 0.119 0 0 0.1

0.25 0.125 0.522 0.375 0.120 0.250 0.370 0.047 0.050 0.297 0.017 0.017 0.252

0.5 0.240 0.500 0.740 0.196 0.270 0.696 0.095 0.101 0.595 0.022 0.022 0.522

1.0 0.393 0.539 1.393 0.299 0.350 1.299 0.189 0.210 1.189 0.099 0.100 1.099

Table 5: Nash payoff (left value), Pareto payoff (middle value) and Nash margin (right value) for

symmetric pricing competition with three agents and varying environment parameters.

µ

a0
-2 -1 0 1

0.1 9.4 [5.0]% 9.3 [5.0]% 2.8 [3.8]% 0.0 [1.6]%

0.25 9.5 [3.0]% 8.2 [3.0]% 2.7 [2.2]% 0.0 [0.7]%

0.5 8.1 [2.2]% 6.6 [2.0]% 2.8 [1.5]% 0.6 [0.9]%

1.0 6.2 [1.3]% 4.6 [1.2]% 2.9 [1.0]% 1.5 [0.8]%

Table 6: Average percent increase of margin γ [std(γ)] in pricing competition with three agents and no

demand delay (m = 1) for varying environment parameters.

µ

a0
-2 -1 0 1

0.1 54.9 [7.7]% 55.7 [8.0]% 37.8 [5.5]% 43.0 [6.2]%

0.25 54.1 [5.0]% 51.1 [4.4]% 37.3 [3.4]% 42.3 [3.8]%

0.5 50.1 [3.6]% 43.1 [2.6]% 37.1 [2.4]% 40.2 [2.7]%

1.0 40.5 [2.4]% 37.1 [2.2]% 35.3 [2.1]% 36.1 [2.7]%

Table 7: Average percent increase of margin γ [std(γ)] in pricing competition with three agents and

one-step demand delay (m = 2) for varying environment parameters.

3.6 Learning algorithm parameters

In this section, we investigate how pricing inefficiency is influenced by the parameters of the learning

algorithm. We again focus on the percent increase of the average margin with respect to the Nash

margin.

For the simulations, we start with the parameters from the baseline simulation (see Table 1). We

first vary the exploration parameter ε and then the size of the sliding window τ . Table 8 shows the

results for the simulations with variable exploration rate ε while Table 9 shows the results for the

simulations with variable sliding window size τ . Both tables include the results for the cases with no

delay (m = 1) and the cases with one-step delay (m = 2). Inspecting Table 8, we observe that the

pricing inefficiency is greatest for moderate values ε. Again, without the delay, margin increases are
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of the order 7%, and when the delay is introduced, pricing inefficiency increases significantly and is

only moderately affected by changes in the exploration rate ε.

Looking at Table 9 with the results corresponding to varying window size τ , we observe an interesting

phenomenon. In the case without the delay, increasing τ increases the quoted margins. With the

delay, increasing τ has the opposite effect - the pricing inefficiency is the greatest for the smallest

value of τ and decreases as τ becomes larger. However, akin to the previous simulations, we observe

that changing value of τ cannot prevent supra-competitive pricing.

delay

ε
0.05 0.1 0.2 0.25 0.3 0.5

no delay 4.9 [1.9]% 7.2 [2.2]% 8.8 [3.0]% 8.2 [3.0]% 8.8 [3.3]% 7.3 [3.9]%

one-step delay 46.5 [5.2]% 51.4 [4.5]% 51.9 [3.8]% 51.1 [4.4]% 50.2 [4.2]% 48.2 [5.4]%

Table 8: Effect of changing the exploration parameter ε on the average percent increase of the average

quoted margin w.r.t. Nash margin γ [std(γ)] for pricing competition with three agents.

delay

τ
10 25 50 75 100 150

no delay 5.2 [3.1]% 6.9 [3.1]% 8.2 [3.0]% 9.1 [3.0]% 10.0 [3.4]% 10.3 [3.5]%

one-step delay 74.1 [5.3]% 58.1 [4.4]% 51.1 [4.4]% 49.1 [4.4]% 46.9 [4.6]% 45.1 [5.5]%

Table 9: Effect of changing the sliding window size τ on the average percent increase of the average

quoted margin w.r.t. Nash margin γ [std(γ)] for pricing competition with three agents.

3.7 Adding noise

In the last section, we analyse the effect of noise on the pricing inefficiency. For this purpose, we

modify the rewards received by the agents such that agent i’s reward becomes:

rit + lηit, (3.6)

where ηit follows a standard normal distribution N (0, 1) and l is the noise level. Note that η1t , ..., η
N
t

are independent.

Table 10 reports the average percent increase in the quoted margin w.r.t. Nash margin for different

levels of noise and for simulations with and without delay in the demand response. The table indicates

that adding noise effectively prevents pseudo-collusion. For simulations without the transient demand

response, when the noise level becomes of the order of the exploration range w, the average margins

are almost equal to the competitive Nash margins.

For simulations with delayed demand response, we can still observe high pricing inefficiency, but it

becomes significantly smaller as more noise is added to the reward. That said, when the noise level is

large (of the order of the exploration width w = 0.01), we can argue whether the parameters of the

bandit algorithm used for the simulations are still appropriate.
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delay

l
0.0002 0.0005 0.001 0.002 0.003 0.005 0.01

no delay 8.3 [3.0]% 6.9 [3.3]% 4.3 [3.3]% 1.8 [3.9]% 1.5 [4.8]% 1 [6]% 1 [8]%

one-step delay 50.1 [4.6]% 47.0 [4.2]% 41.8 [4.8]% 34.3 [5.4]% 30.6 [5.8]% 26 [7]% 20 [9]%

Table 10: Effect of noise level l on the average percent increase of the average quoted margin w.r.t.

Nash margin γ [std(γ)] for pricing competition with three agents. The results for l ∈ {0.005, 0.01}
were calculated across 40 different simulation instances due to high variance.

4 Conclusions

In this work, we present simulations of pricing competition between bandit algorithms. The bandit

algorithms, while simple, are rational, non-stationary, and with local exploration. When deployed, they

converge to the local maximum of the reward function and can adapt to changes in the environment,

at the same time limiting the temporal variation of the quoted price. Furthermore, we modify the

standard logistic pricing environment so that it allows for a transient response of demand to the price

changes. The demand used to calculate the rewards can depend on the price history, not just the

current prices.

We show that in this simple setting, even without delay in demand response, the agents can converge to

supra-competitive pricing and increase the quoted margins by around 8% with respect to competitive

Nash levels.

When a small delay is added to the environment and the experienced demand is a two-step average

of the current and previous true demand, the pricing inefficiency significantly increases. The quoted

margins can increase by approximately 50%.

In addition to the baseline experiment, the study presents a simple sensitivity analysis of the pseudo-

collusion due to simulation hyperparameters: the number of participating agents, environment param-

eters, learning parameters and noise in the observed reward. While the hyperparameters affect the

pricing inefficiency for simulations with and without transient demand response, the effect of the delay

is always significant. The factor that reduces the pricing inefficiency the most is the stochasticity of

the reward. When the noise is of the order of the exploration width w, the observed pseudo-collusion

is greatly diminished. Furthermore, since the pricing inefficiency is measured relative to the Nash

equilibrium, the magnitude of price increases can be reduced by improving market competitiveness,

particularly through increasing the number of market participants.

4.1 Further Work

An interesting avenue for future work would be the addition of past action memory to the agents while

keeping the restrictions applied in this work. The agents should be ready for deployment, and their

exploration should be constrained so that the temporal variation in the quoted price is still limited.

A possible approach would be to use Q-learning (Watkins et al. 1992) or Soft-Actor-Critic (Haarnoja

et al. 2018), identify state-action pairs that correspond to high price variations, and manually set

their values to a large negative number. Such a study would be an extension of Calvano et al. 2020

13



and would provide insight into whether tacit collusion can arise when restrictions are imposed on the

start-up and exploration of these algorithms.
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Garivier, Aurélien and Eric Moulines (2008). “On upper-confidence bound policies for non-stationary

bandit problems”. In: arXiv preprint arXiv:0805.3415.

Haarnoja, Tuomas et al. (2018). “Soft actor-critic: Off-policy maximum entropy deep reinforce-

ment learning with a stochastic actor”. In: International conference on machine learning. PMLR,

pp. 1861–1870.

Kastius, Alexander and Rainer Schlosser (2022). “Dynamic pricing under competition using reinforce-

ment learning”. In: Journal of Revenue and Pricing Management 21.1, pp. 50–63.

Klein, Timo (2021). “Autonomous algorithmic collusion: Q-learning under sequential pricing”. In: The

RAND Journal of Economics 52.3, pp. 538–558.

Musolff, Leon (2022). “Algorithmic pricing facilitates tacit collusion: Evidence from e-commerce”. In:

Proceedings of the 23rd ACM Conference on Economics and Computation, pp. 32–33.

Rathore, Waleed (2022). Dynamic Pricing on Amazon: A Brief and Easy Explainer. https://www.

zonguru.com/blog/dynamic-pricing-on-amazon. [Online; accessed 26-March-2024].

Seth, Shobhit (2023). Basics of Algorithmic Trading: Concepts and Examples. https : / / www .

investopedia . com / articles / active - trading / 101014 / basics - algorithmic - trading -

concepts-and-examples.asp. [Online; accessed 26-March-2024].

Singh, Abhijeet P. (2024). Uber Pricing Strategy. https://ginzerr.com/uber-pricing-strategy/.

[Online; accessed 25-March-2024].

Sliwinski, Lukasz et al. (2024). “Competitive Insurance Pricing Using Model-Based Bandits”. In:

Available at SSRN: https://ssrn.com/abstract=4755027.

14

https://on.ft.com/4a9xGmc
https://www.zonguru.com/blog/dynamic-pricing-on-amazon
https://www.zonguru.com/blog/dynamic-pricing-on-amazon
https://www.investopedia.com/articles/active-trading/101014/basics-algorithmic-trading-concepts-and-examples.asp
https://www.investopedia.com/articles/active-trading/101014/basics-algorithmic-trading-concepts-and-examples.asp
https://www.investopedia.com/articles/active-trading/101014/basics-algorithmic-trading-concepts-and-examples.asp
https://ginzerr.com/uber-pricing-strategy/


Sutton, RS and AG Barto (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT

Press.

Treetanthiploet, Tanut et al. (2023). “Insurance pricing on price comparison websites via reinforcement

learning”. In: arXiv preprint arXiv:2308.06935.

Watkins, Christopher JCH and Peter Dayan (1992). “Q-learning”. In: Machine learning 8, pp. 279–

292.

Declarations

Funding

Lukasz Sliwinski was supported by the EPSRC Centre for Doctoral Training in Mathematical Mod-

elling, Analysis and Computation (MAC-MIGS) funded by the UK Engineering and Physical Sciences

Research Council (grant EP/S023291/1), Heriot-Watt University and the University of Edinburgh.

Code availability

Numerical experiments presented in this work have been implemented in Python. All the code neces-

sary to reproduce the results can be accessed at the Github repository https://github.com/ls2716/

AlgorithmicPricingWithTransientDemand.

15

https://github.com/ls2716/AlgorithmicPricingWithTransientDemand
https://github.com/ls2716/AlgorithmicPricingWithTransientDemand


A Proofs of symmetric equilibrium uniqueness

A.1 Proof of uniqueness of symmetric Nash equilibrium

We want to prove that for a symmetric environment with a1 = a2 = ... = aN := a and c1 = c2 = ... =

cN =: c there exists exactly one symmetric Nash equilibrium p∗ = {p∗, p∗, ..., p∗} ∈ RN . Specifically,

we have to show that there exists exactly one p∗ such that the expression

r(p, p∗) :=
(p− c) exp

(
a−p
µ

)
exp

(
a−p
µ

)
+
∑N

j=2 exp
(
a−p∗

µ

)
+ exp

(
a0

µ

) (A.1)

has a unique global maximiser w.r.t p which is equal to p∗.

We start by computing the derivative with respect to p

∂r

∂p
=

[
− 1

µ(p− c) exp
(
a−p
µ

)
+ exp

(
a−p
µ

)]
A+ 1

µ(p− c) exp
(
a−p
µ

)
exp

(
a−p
µ

)
A2

, (A.2)

where

A := exp

(
a− p

µ

)
+

N∑
j=2

exp

(
a− p∗

µ

)
+ exp

(
a0

µ

)
. (A.3)

We equate the derivative to 0, divide by exp
(
a−p
µ

)
> 0 and multiply by A2 > 0. Then

0 = − 1

µ
(p− c)

[
A− exp

(
a− p

µ

)]
+A (A.4)

Now, we note that

A− exp

(
a− p

µ

)
=

N∑
j=2

exp

(
a− p∗

µ

)
+ exp

(
a0

µ

)
(A.5)

is positive and constant with respect to p. Furthermore,[
A− exp

(
a− p

µ

)]
> 0 (A.6)

and

∂

∂p
exp

(
a− p

µ

)
< 0 =⇒ ∂A

∂p
< 0. (A.7)

(Note that µ > 0.)

Therefore

− 1

µ
(p− c)

[
A− exp

(
a− p

µ

)]
+A (A.8)

is monotonically decreasing with respect to p. We then see that

lim
p→−∞

∂r

∂p
= ∞ and lim

p→+∞

∂r

∂p
= −∞. (A.9)
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Thus, ∂r
∂p = 0 has a unique solution and so r has a unique maximiser with respect to p.

Let us denote the maximiser as p′ and note that it is a function of p∗. Next, we have to prove that

there is exactly one solution to

p′(p∗) = p∗. (A.10)

To show that, we first write the implicit equation for p′ and p∗ (A is a function of p∗):

− 1

µ
(p′ − c)

[
A− exp

(
a− p′

µ

)]
+A = 0. (A.11)

Since exp
(
a−p′

µ

)
> 0, we have

1

µ
(p′ − c)

[
A− exp

(
a− p′

µ

)]
= A− exp

(
a− p′

µ

)
+ exp

(
a− p′

µ

)
(A.12)

1

µ
(p′ − c)− 1 > 0. (A.13)

We now take a derivative of Equation (A.11) with respect to p∗. We get

− 1

µ

∂p′

∂p∗

[
A− exp

(a− p′

µ

)]
+

1

µ2
(p′ − c)(N − 1) exp

(a− p∗

µ

)
− 1

µ
(N − 1) exp

(a− p∗

µ

)
− 1

µ

∂p′

∂p∗
exp

(a− p′

µ

)
= 0.

(A.14)

Solving for the partial derivative, we get

∂p′

∂p∗
=

[
1
µ(p

′ − c)− 1
]
(N − 1) exp

(
a−p∗

µ

)
A

. (A.15)

Now, Inequality (A.13) implies ∂p′

∂p∗ > 0 always.

Furthermore, from Inequality (A.13), we know that p′ > c and by inspection

lim
p∗→∞

[
− 1

µ
(p′ − c)

(
A− exp

(
a− p′

µ

))
+A

]
= − 1

µ
(p′ − c) exp

(
a0

µ

)
+ exp

(
a− p′

µ

)
+ exp

(
a0

µ

)
(A.16)

has a unique finite solution (same argument as before). Thus, continuity implies that there exists

exactly one p∗ such that p′(p∗) = p∗. This concludes the proof.

A.2 Proof of uniqueness of symmetric Pareto equilibrium

We want to prove that for a symmetric environment with a1 = a2 = ... = aN := a and c1 = c2 = ... =

cN =: c there exists exactly one symmetric Pareto equilibrium p∗ = {p∗, p∗, ..., p∗} ∈ RN . Specifically,

we have to show that

r :=
(p− c) exp

(
a−p
µ

)
∑N

j=1 exp
(
a−p
µ

)
+ exp

(
a0

µ

) , (A.17)
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has a unique global maximiser.

We again compute the derivative:

∂r

∂p
=

[
− 1

µ(p− c) exp
(
a−p
µ

)
+ exp

(
a−p
µ

)]
A+ 1

µ(p− c)N exp
(
a−p
µ

)
exp

(
a−p
µ

)
A2

, (A.18)

where

A := N exp

(
a− p

µ

)
+ exp

(
a0

µ

)
. (A.19)

We equate the derivative to 0, divide by exp
(
a−p
µ

)
> 0 and multiply by A2 > 0.

0 = − 1

µ
(p− c) exp

(
a0

µ

)
+A (A.20)

Now, we note that exp
(
a0

µ

)
is positive and constant with respect to p. Furthermore,

A > 0 (A.21)

and

∂

∂p
exp

(
a− p

µ

)
< 0 =⇒ ∂A

∂p
< 0. (A.22)

Therefore

− 1

µ
(p− c) exp

(
a0

µ

)
+A (A.23)

is monotonically decreasing with respect to p. We note that

lim
p→−∞

∂r

∂p
= ∞ and lim

p→+∞

∂r

∂p
= −∞. (A.24)

Thus, ∂r
∂p = 0 has a unique solution and so r has a unique maximiser with respect to p. This concludes

the proof.
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